skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fordyce, Polly M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Droplet microfluidics enables kHz screening of picoliter samples at a fraction of the cost of other high-throughput approaches. However, generating stable droplets with desired characteristics typically requires labor-intensive empirical optimization of device designs and flow conditions that limit adoption to specialist labs. Here, we compile a comprehensive droplet dataset and use it to train machine learning models capable of accurately predicting device geometries and flow conditions required to generate stable aqueous-in-oil and oil-in-aqueous single and double emulsions from 15 to 250 μm at rates up to 12000 Hz for different fluids commonly used in life sciences. Blind predictions by our models for as-yet-unseen fluids, geometries, and device materials yield accurate results, establishing their generalizability. Finally, we generate an easy-to-use design automation tool that yield droplets within 3 μm (<8%) of the desired diameter, facilitating tailored droplet-based platforms and accelerating their utility in life sciences. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract Transcription factors (TF) are proteins that bind DNA in a sequence-specific manner to regulate gene transcription. Despite their unique intrinsic sequence preferences,in vivogenomic occupancy profiles of TFs differ across cellular contexts. Hence, deciphering the sequence determinants of TF binding, both intrinsic and context-specific, is essential to understand gene regulation and the impact of regulatory, non-coding genetic variation. Biophysical models trained onin vitroTF binding assays can estimate intrinsic affinity landscapes and predict occupancy based on TF concentration and affinity. However, these models cannot adequately explain context-specific,in vivobinding profiles. Conversely, deep learning models, trained onin vivoTF binding assays, effectively predict and explain genomic occupancy profiles as a function of complex regulatory sequence syntax, albeit without a clear biophysical interpretation. To reconcile these complementary models ofin vitroandin vivoTF binding, we developed Affinity Distillation (AD), a method that extracts thermodynamic affinitiesde-novofrom deep learning models of TF chromatin immunoprecipitation (ChIP) experiments by marginalizing away the influence of genomic sequence context. Applied to neural networks modeling diverse classes of yeast and mammalian TFs, AD predicts energetic impacts of sequence variation within and surrounding motifs on TF binding as measured by diversein vitroassays with superior dynamic range and accuracy compared to motif-based methods. Furthermore, AD can accurately discern affinities of TF paralogs. Our results highlight thermodynamic affinity as a key determinant ofin vivobinding, suggest that deep learning models ofin vivobinding implicitly learn high-resolution affinity landscapes, and show that these affinities can be successfully distilled using AD. This new biophysical interpretation of deep learning models enables high-throughputin silicoexperiments to explore the influence of sequence context and variation on both intrinsic affinity andin vivooccupancy. 
    more » « less
  3. Short tandem repeats (STRs) are enriched in eukaryoticcis-regulatory elements and alter gene expression, yet how they regulate transcription remains unknown. We found that STRs modulate transcription factor (TF)–DNA affinities and apparent on-rates by about 70-fold by directly binding TF DNA-binding domains, with energetic impacts exceeding many consensus motif mutations. STRs maximize the number of weakly preferred microstates near target sites, thereby increasing TF density, with impacts well predicted by statistical mechanics. Confirming that STRs also affect TF binding in cells, neural networks trained only on in vivo occupancies predicted effects identical to those observed in vitro. Approximately 90% of TFs preferentially bound STRs that need not resemble known motifs, providing a cis-regulatory mechanism to target TFs to genomic sites. 
    more » « less